December 2006 $9.95 www.StickyMinds.com

B E I I E R SEMPER FlI

SOFTWARE ™

The Print Companion to

LET'S DOTHE NUMBERS
The annual salary survey
results are in!

e Han
Youre Dealt

Better Designs Through
Problem Redefinition

hé'm irq
You're Dealt

Better Designs Through
Problem Redefinition

By Payson Hall

18 BETTER SOFTWARE DECEMBER 2006 www.StickyMinds.com

For many of us, design is the most enjoyable part of software

development. Oh sure, debugging can be fun and it is wonderful

when everything comes together at the end, but if you're like me,

you prefer to spend a little more time “up front” during design to

minimize the complexity of debugging and maximize the likelihood

that it will all come together.

Design is the all-too-brief period during an application’s
evolution when we consider what we want to create and speculate
about how we want to do it but are not yet fully committed to
any particular approach to the problem. A shortcoming of some
of the best programmers | know is the tendency to minimize this
“pre-coding” thinking time and begin implementing the first
viable solution that occurs to them. The trouble is that there are
several ways to solve most problems, each exhibiting various
levels of efficiency, ease of implementation, maintainability, and
portability. If a designer stops with the first design that
“works,” there may be a needless sacrifice of quality. In this
rush it is easy to confuse a functional design with a quality
design. The distinction can be subtle, particularly if both are
implemented professionally, because both will get the job
done. The difference in development and maintenance costs,
however, can be remarkable.

“Wait!” | imagine you thinking as you read this. “The
‘Best’ is the enemy of the ‘Good.” If we worked until we had
the perfect design, we would never accomplish anything!”
Wise words, but frequently applied prematurely to software
design. As a profession, software development seems to be in
little danger of overemphasizing design or seeking perfection.

This article focuses on an aspect of the problem definition
portion of the design process using two examples—a parable
and a program fragment—that illustrate how seemingly small
changes to the problem definition or representation can have
a simplifying effect on the solution.

Redefining the Problem

From the perspective of the system developer, complexity is
the enemy of the development process. There is a limit to the
amount of complexity that any of us can deal with effectively,
and when our capacity is exceeded, system quality is a frequent
casualty. One goal of the skilled designer is to minimize solution
complexity in order to maximize the quality of the resulting
system (by “quality” | mean a system that can be developed
efficiently; meets its requirements; and is reliable, portable,
and maintainable).

Good designers use a number of techniques to seek simplicity.
One method that may seem counterintuitive is redefining the
problem to be solved—sometimes even adding complexity
to the original problem definition—in order to reduce the
complexity of the solution.

A Puzzling Parable

I was first exposed to the problem redefinition strategy in
a math puzzle. A shepherd died and was survived by three
sons and twenty-three sheep. In his will, the shepherd left half
of the sheep to the eldest child, one-third to the middle child,
and one-eighth to the youngest child. Since the sheep were to
be used for their wool, the sons weren’t thrilled with the notion
of cutting up sheep to account for fractions. As they stood by
the road arguing about how the division should occur, a wise
woman came along, leading a sheep of her own to market.
When the problem was explained to her, she considered it for
a moment, and then praised the boys for not being too quick
to butcher the sheep, which she said was not really necessary.
They looked at her curiously, and she said, ““Let me lend you
this lamb as a tribute to my friendship with your father.”” She
then led her lamb into the herd. “Now the division should be
simpler.” The eldest child smiled as he took away half
(twelve) of the sheep to begin his herd. The middle child
breathed a sigh of relief as he took one-third (eight) of the
sheep from the pen and led them home to his farm. The
youngest child watched as the old woman led her lamb from
the pen and continued down the road toward the market,
leaving him with one-eighth (three) of the herd.

Too often during the design process we find ourselves
worrying about the complex implementation of messy details
(like dividing live sheep), without first seeking ways to minimize
complexity by redefining the problem. Subtle changes to the
problem being solved can have surprising benefits in terms
of simplification.

A “Solitary”” Programming Example

Solitaire is the name given to a family of card games that are
played by a single player. | enjoy solitaire, and | have always
wondered which strategies of play are the most effective. | once
designed and built a simulation program to play a solitaire game
called “Klondike,” probably the most widely played variant of
solitaire (see the sidebar for game rules and visit the StickyNotes
to see the simulation program). | wanted to observe the effects
of different strategies over a large number of games. During my
initial thinking about the design, | was dismayed by the number
of special cases that seemed to exist when | tried to describe in
algorithmic terms how to play the game. The initial placement

www.StickyMinds.com DECEMBER 2006 BETTER SOFTWARE 19

of aces is a special case, as is some of the logic required to handle
depleting one of the seven face-up piles on the board:

X.0 If the face-up pile is exhausted
X1 If there are face-down cards
turn one face up
X.2 Else (no face-down cards)
a king can go here

The possibility that the table might be left bare requires yet
another special case in the card playing logic (the second
special case below):

1 If value of card_to_play = ace [*Special Case*/
move to suit row for score
2 Elseif value of card_to_play = (top card in its suit row) + 1

move to suit row for score
3 Else
Do for each face-up pile (until placed)
31 If value of card_to_play = king
andif (face-up pile exhausted)
start a new face-up pile with the king
32 If color of card_to_play is red
andif (value of top face-up card) = card + 1
andif (color of top face-up card) = black
move card_to_play to face-up pile
33 If color of card_to_play is black
andif (value of top face-up card) = card + 1
andif (color of top face-up card) = red
move card_to_play to face-up pile
End do
4 If not played by an earlier step
card_to_play is not playable (place in discard pile)

I didn’t like it. It was too messy, and it violated one of the great
truths of system design: “Nature abhors the special case.”

Changing the Problem to Eliminate
the Special Cases

| set out to see if | could factor out the special cases to
simplify my task. | realized that kings and aces were special
cases because they were boundary conditions. It is common to
have special cases at the boundaries of a problem; the question
is ““Can the boundary be moved
or removed?”

The special case
A/ of the aces was
4 the first to be

[

o

0
v vl

simplified.

20 BETTER SOFTWARE

/*Special Case*/

/*Special Case*/

DECEMBER 2006 www.StickyMinds.com

I asked myself, “Is there a way to avoid the special test for

aces?”” (step 1 in the algorithm previously described). | observed
that the reason aces were a special case is that they com-
prised the foundation of the suit row and, unlike all
other cards in the deck, had no ordinal predecessors.
This meant that they could not be placed according to
step 2. Until the aces were placed, no deuces would pass
the test in step 2 either. “If only there were a zero of
hearts,” | thought. “Then aces would no longer be a
special case.” Eureka! | imagined placing zeros of
hearts, diamonds, clubs, and spades on the table as
placeholders for the suit row at the start of each game.
Now step 1 was no longer necessary, and aces could be
placed according to the rules already defined in step 2.
The problem definition was changed slightly (solitaire

is not normally played with a fifty-six card deck that includes

zeros of hearts, diamonds, clubs, and spades), but the under-

lying problem (i.e., accurately simulate a game of Klondike)
was not changed, and the solution was simpler. All |
had to do was add four cards to my fifty-two card
deck, which would be “nailed to the table” during
initialization and not affect play in any substantive
way. Once the special case of the aces was solved, the
kings were just a step away.

The king boundary problem also arose because
kings do not have predecessors (actually ordinal
successors; remember that you count down from high to
low when playing cards on the board). Kings could only
be moved to the board when the face-up and face-down
piles were exhausted, exposing the bare table below.
Having already overcome the conceptual hurdle of
inventing cards and adding them to the deck, | imagined
a card larger than a king (an emperor?) that | could
place on the table to attract kings when the face-up and
face-down piles had been exhausted (currently handled
by step 3.1). This would allow me to eliminate step 3.1
altogether, since, if kings were playable, they would be
played during step 3.2 or 3.3. The trouble was that
steps 3.2 and 3.3 required that the emperors be both

black and red if any king were to go on any bare table space.
| realized that | was being too literal about representing the
deck of cards—assuming that it could only contain two
colors, red and black. If | allowed a third color (green), then |
could make my emperors that color and combine steps 3.2
and 3.3 into a single step:

If (value of top face-up card) = card_to_play + 1
andif (color of top face-up card) # card_to_play
move card_to_play to face-up pile

All | needed to do was add a green emperor face down at
the bottom of each face-down stack during initialization, and
the rules became simpler still.

I assigned all of the emperors a suit of “circles.” Emperors
were now the boundary condition, but they could never be

Klondike Rules

In Klondike, a regular deck of fifty-two cards is used. To start the game,
seven face-down piles of cards are dealt in a row to form the “board.” The first
pile of the board contains one card, the second has two cards, the third has
three, and so on. The top card of each board pile is turned face up and placed
on top of the remaining cards in that pile. The rest of the deck comprises
the “stock.”

The goal of the game is to maximize the number of points scored during play
by making a series of legal moves (described below) between piles of cards.

Whenever an ace is revealed during play, it is placed in a separate pile in a
suit row above the board. On the aces you may build an ascending sequence
of cards of similar suit (e.g., on the ace of spades you may place the two of
spades, followed by the three). The cards placed on the aces may be moved
individually from the top of the face-up piles of the board or from the discard
pile. A point is scored for each card played on the suit piles. To “win” the game
and achieve a perfect score, all four aces must be placed in the suit row and
the ascending sequence must be built completely to the king of each suit (a
total of fifty-two points). Once a card has been placed on a suit pile, it may not
be moved for the rest of the game.

To play the game, the cards are dealt onto the board and the player makes
legal moves of cards between the piles. On the face-up piles of the board you
may place a card of alternate color that occurs next in descending sequence
(e.g., if the top face-up card of a pile is a black nine [clubs or spades] then a
red eight [hearts or diamonds] can be placed on that pile). Cards placed on top
of the face-up pile may be the card or cards comprising another face-up pile or
a card from the discard pile. When one face-up pile is moved to another, all of
the face up cards in the original pile must be moved as a group. The highest
value card (the bottom) of the face-up group being moved must be legally
playable on top of the receiving pile. When the face-up cards are removed from
a pile, it may reveal a pile of face-down cards (if the face-down pile has not
been exhausted), and a face-down card may be turned face up on that pile to
replenish the face-up pile. When a pile is completely exhausted, the vacant
place on the table is eligible to receive any king that is on the board or is
revealed later during play. If a king is not immediately available, play continues,
leaving the vacant place on the table unused until the game ends or a king
becomes available.

Cards from the stock are turned face up one at a time and placed on a
separate discard pile. The top card in the discard pile may then be played onto
any of the other piles (either the board or the suit row) at any time. Once the
top card from the discard pile has been played, any legal moves created by the
play may be taken. When a card is played from the discard pile, the top card
remaining in the discard pile may then be played. When the stock has been
exhausted and no legal moves remain, the game is over.

moved (there was no card bigger that would cause them to
relocate on the board, and there was no ““king of circles”
to attract them to the suit row). This meant that the test in
step X.1 was no longer necessary; if the face-up pile was
exhausted, then there had to be a face-down card until you
turned up the emperor, and once you turned up the emperor it
could not be moved to exhaust the stack. This also eliminated
the special case for king processing described in step X.2,
because once the emperor in a face-down pile was exposed it
would attract kings according to the modified rule 3
described previously. All that remained was an administrative
detail: It was necessary to create a zero of circles to avoid
adding complexity into step 2 when testing whether cards in
face-up piles were playable.

The end result of adding these twelve additional cards (five
zeroes and seven emperors) to the deck was a minor change to

the dealing (initialization) routine and a tremendous reduction
in the complexity of play, without altering the “real” game in
any way.

The simplified rules of play were:

X When a face-up pile is exhausted
turn a face-down card face up

1 /* step eliminated */
2 If value of card_to_play = (top card in its suit pile) + 1
move to its suit pile for score
3 Else
Do for each face-up pile (until placed)
If (value of top face-up card) = card_to_play + 1
andif (color of top face-up card) # card_to_play
move card_to_play to face-up pile
End do
4 If not played by an earlier step

card_to_play is not playable (place in discard pile)

By changing aspects of the problem I reduced the complexity
of the solution without sacrificing functionality or changing the
underlying system behavior. Eliminating the special cases
increased both the simplicity and quality of the solution.

Identifying and avoiding needless complexity is part of
building quality systems. Changing the definition or internal
representation of a problem may significantly reduce solution
complexity, but the analysis consumes time and resources. Is
the investment worthwhile?

A designer or project manager with limited resources and
an aggressive schedule might reasonably question the benefit
of searching beyond the first “good enough” solution
identified, but finding a simpler solution can be extremely
valuable. Simpler solutions are usually less expensive and
time consuming to build, less error prone, easier to test, easier
to maintain, and easier to modify. When design simplification
results in efficient, simpler, and smaller programs, real
productivity is improved. {end}

Payson Hall (payson@catalysisgroup.com) is a consulting
systems engineer and project manager from Catalysis Group,
Inc. in Sacramento, CA. Formally trained as a software
engineer, Payson has performed and consulted on a variety of
hardware and software systems integration projects in both
the public and private sectors throughout North America and
Europe during his twenty-six-year professional career. He is a
regular columnist on StickyMinds.com.

Sticky
Notes

For more on the following topic, go to
www.StickyMinds.com/bettersoftware.

m Klondike simulation program

www.StickyMinds.com DECEMBER 2006 BETTER SOFTWARE 21

